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Abstruct.
Finite volume ntethod for spatial discretization of two-dimensional Euler

equations is used to describe flow of an inviscid gas among structural elliptic grid. A four
step Runge-Kutta scheme is also applied for time integration. A non-linear artfficial
uiscosity is added to suppress numerical oscillatiort of solution. The boundary conditions at
inflow and outflow are based on the method of characteristics. The results for some
subsonic cases are presented and collated with experimental data.

Introduction.
For the several decades past a wide number of methods for

simulation of viscous compressible flow have been developed. one of them,
a finite volume method, is proved simple artd efficient for calculation of
such cases. The choice of this method is determined by these factors.

It is possible to apply the method for various cases of space
discretization. This fact determines two forms of numericar flux
implementation - the so called cell and nocle centering. It is useful to apply
cell centering while structural quadrilateral grid is used. otherwise, in case
of triangular meshes, both ways of centering are permitted but in case of
node centering an overlapping of two adjacent cells occurs. In the case when
the grid is generated by solving a system of Laplace equations, a solution
among curves extremely close to the flow equipotential and stream lines is
asked.

when the spatial discretization is done, the considered partial
differential equation is reduced to ordinary one. There are different
numerical methods for solving space - discretized Euler equations but most
frequently applied are Runge Kutta schemes. These schemes use
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information from only one previous iterative stage. Their advantage is the
increased acc:uracy. Actually, when high accuracy is not required, it is
possible to adjust the current iterative step size. This fact allows acceleration
of the numerical process.

Theoretical background.
Conservative system equations, describing compressible gas flow

among cartesian coordinates (2D), is consisting of continuity, Euler and
energy equations. It has the form:
/1\ a -/ ., 0 =r-/ \r a -r-(1) ;dl.,y,t)* # f Lqe,y,t)1. #AlAe,y,t)l=

, ,l- 1 t ^ ^rl- (r - t )l p - '(/( - r )lo - rpv' * r' )).
Here r is the Poisson adiabatic constant, R is universal gas constant and
c p , c v are the specific heats. The unknown quantities are included in the

governing equations with their dimensionless values

p-PTp = 
- 

I = 
- 

L4,V =
Po To Pr/RT o
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where the subscript ( )o denotes stagnation parameter.

Numerical solution.
The finite volume method is applied for solving of equations (1). For

this purpose the physical space around the rigid body is discretized to
quadrilateral ce1ls (finite volumes - fig. z). As explained in Ref. [1] the basi<:
idea of the method is to satisfy the integral form of equations (1) for each
control volume. It is necess ary to find out total flux of vectors y Q ) and
g (q ) on each face of the cell separately and so on along the entire grid.

Then, as proposed in Ref. l2l, for the present time step, the system (1) is
discretized for the current cell like this;

9(r, )*ot

4

\- (u opo )= o

(2) #ft Q,)l* P, l, reu)o + (- r)' Ly o po ]= o

#ft Q,)1* p, lu re,)n * (- r)n.

*ftt )* i, lu r@ + p)n

tL*opol=o

]= o

The -r symbol means the cell area and

u k = (- t)n n I r,u r, + (- 1)**ta xr,v t
corresponds to a contravariant velocity component. The sign replacement in
front of an individual additive is conformed to normal veCtor sign variation
while shifting to the adjacent cell. Each quantity, in system (2), is evaluated
as the average of the values in the cells on the two sides of the cell,s face
(fig. 1), for example:

u ,(pu), = ll, ,,i(pu),,i + U ,,,_,(pr),,,_, ]
Thus the scheme is an analog of a
central difference scheme on a
Cartezian grrd.

Time depending
derivative discretization scheme, o'-

for space-discretized equations

Fig. 1. Flux calculation sequence
about cell i, .i
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+* !a(q,)= o,dt J,- "'
i = I,2,3,...
is 4th order Runge - Kutta

q(4) _ q(o) L^t ^
6

q(o) = q"

q(') = q(o) - io (qt" )
q(r) = q(o) - iA (q,,,)

q(r) = q(o) - iO (q,', )
(q'o' )- + Q (q"')- + a (q" ')- {o (d"

n(n+t) _ q(4)
Here the flux Q (q, ) i, computed over again at each time step where the
following initial conditions are considered:

tc = I.4 Po=l Po =7

uo= M _aocos a vo= M _aosin a
Here symbol a denotes speed of sound, a means the angle of attack and
M denotes Mach number.

To suppress non-physical osciliations of the results, according to
Ref. [2], the last time step is augmented by addition of the filter:

n(n+|, = q(o) + A tD jp,D _q(o) + A tO jA rD rqro,
In the expression above the superscripts + and - denoted forward and
backward difference operators. The coefficients lt * and, p y are made

ploportional to

,, Q i+l,j 2Q,,i t Q,-,,i
4r __

Q ,*r,i + 2Q ,,, - Q ,-r,i
,, Q,,i*t - 2Q i,1 -t Q,.i-,*Y- 

LJrr+rOrt-O,tt
The boundary conditions, in accordance with placement, are reduced

to the following kinds: along the rigid body contour and along the outer
boundary of the physical domain. In regard to the first group, it is truth that
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all fluxes across contour are identically zero (impermeable condition).
Exception is numerical contribution to the momentum flux.

The second kind boundary conditions, computation of which is
based upon one-dimensional characteristic method. is divided on inflow and
outflow. Because wave propagation normal to the boundary is dominant,
variations parallel to the boundary may be neglected and the linearized one-
dimensional Euler equations can be written as:

AU AU-r A-= udt dx
p

u

0

pa'

0

0TI

u

0

The reference state for evaluating the matrix A will be the state on
boundary at the old time step. To make the matrix A constant, the average-
value of the state vector on the boundary will be used to evaluate A

For subsonic inflow, there are three incoming waves and one
outgoing wave. The last one is computed by the algorithm using quantity
conservation of corresponding Riemann invariant among the same wave
while for the incoming waves the prescribing quantities for nozzle inflow
(total enthalpy, entropy and flow angle) are used:

pu
uA A-v0
P0

0
1

p
0

u

H - K p *Lhr+ur)
tc -1 p 2 \ '/

t/\,/\s = ln \p )- K tn \p )
q = arctg v

u
For subsonic outflow the

linearized analysis shows that there are
three outgoing waves and one incoming
wave. In such case it is classic to
prescribe the static pressure at outflow
nodes.

Computational grid.
As was mentioned above, the

physical domain surrounding wing section
is discretized into finite cells. In the
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Fig.2. An "O"-type computational
grid (above) and its expanded center
(below) surrounding Eppler387 wing
section



curent case of study this fact is jachieved by curvilinear elliptic coordinate
system generation by solving syjstem Laplace equations. As mentioned in
Ref. [3] the iterative act of synfhesis uses initial coordinates of the grid
nodes, which are evaluated previiously by interpolating the interior of the
physical domain. The grid coordinates at the boundaries of the field import
the boundary conditions. Thei intelpolation used is one-dimensional
(normally to boundary curves) a4d includes hyperbolic tangent function. In
this way the derived initial "ordinlate" axis allocation .orr"rponds well to the
Laplace operator "effect of smoothness": the closing in of the "abscissas"
curves to the convex boundary. jThe construction of the interpolation, as
proposed in Ref. [4], is made as fOllows: let arc leneth s varies from 0 to 1

and arc's points number € i'aries from 0 tJ 1 in such way so

" 
(0 ) = 0;s (l ) = I .Initiallyiassigning vaiues of rhefirstderivatives

d t:-^,is(f = O)= Ar,oc i

d tP ,

#,(( =, )= A',
the following expressions are defifred:

,nl df i- r)l
L \1 2))

'(f)= + (1 - n)",(€)
If the
,G).

ill
equations above

[' (o ); r (r )] ttren

A

applied to curve for which
fod the curve point distribution follows:

)= r(o)* ['(l)-io(o)]'(E),t = 0,r,2,3,..., r
i

i
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The derived in the described manner initial grid quantities are
"smoothed" by solving the Laplace equations about /

L6=o
Lry =o

which are previously transformed into curvulinear basis (Ref. [3]). The new
system equations looks like:

8zz\1 * gnrnn -2grrrr, = 0

Br=x|+y|
grr=xtr+!tr

gn=XqXn+lEln

It is solved, after aproximation with finite defferences, by successive
overrelaxation method with corresponding coefficient ar = 1 .8

Results.
An "O" - type elliptic grid has been generated with 200 points along

tangent and 100 points along normal directions of Eppler 387 wing section.
Thus the physical domain around the foil has been discretized with 20000
cells (fig. 2).

With the developed numerical algorithm serial calculations has been
implemented with various Reynolds numbers and angles of attack. The
results, verified with experimental data (published in Ref. [5]), are shown
below. There are not a good coincidence with the experiment at the
Reynolds numbers Re-60000. The reason of this is inability of the
algorithm to prpdict transient flows.

Re=69999

o
1

0,5

. Experim ental data

- 

N um erical data

-5 0 5 10

Angle of attack, deg

15
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R e= 1 00000

- Experimentaldata

- 

N Um e rical data

R e=460000

1

0,5

- Experim€nlal dala

-Numericaldat6

5 0 5 10 15
A ngle of attack, deg

Conclusion.
A finite volume method has been used to solve partial differential

equations of Euler, describing a motion of an ideal gas in two-dimensional
space. A steady-state solution has been achieved using a 4'o order Runge -
Kutta scheme. The numerical oscillations of solution were suppressed by
augmenting artificial viscosity. The boundary conditions were derived using
method of characteristics. An elliptic grid has been generated while solving
a system of Laplace equations. The ability of the algorithm has been
demonstrated to simulate a subsonic flow over a wing section.
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IIPI4JIOXEHI4E HA METOAA HA KPAITHI4TE OEEMI4II
CXEMA PYHIE . KYTA 3A AEPOAI'IHAMAIIEII AHAJII43 HA

OETVqAIIETO HA KPI,IJIEH IIPO@I4JI

Koucmaumuu Memoduee

PesroN{e

B pa6or*a e z3rroJr3BaH Merona Ha KpafiHr4Te o6erraz 3a
AZCKPETI43AI\Ufl' HA YPABHCHI4'TA HA OfirrEP, OIIHCBAIIII4 ABNXEHIIETO HA
vAeaneH ra3 Bbpxy crpyKTypHa erlnnrn.*Ha KOOpAUHaTHa cr4creMa.
trlsnonssaua e c'''Io cxeMa pyHre-Kyr a or 4-Tpr p"o 

"u 
[ocneABarlo

IZHTETPI4PAHE NO BPEME. IO6ABEH E HCNPIHEEH TT3KYCTBEH BI,ICKO3I{TET 3A TAce noATr4CHar He$z:uuecxu qrlcJreHr4 Ocrlllnallril4 Ha pelreHr4ero.
onpegenrHero Ha fpaHr.rtrHr4Te ycJroBr{r e lasupauo Ha MeroAa Ha
xapaKTepvcrr4Kr4Te. Pesyrrarzre or npr4Jlo)r{eHLrero Ha anropr4TsMa Bbpxy
cttyuafi Ha Ao3ByKOBo o6rzqane Ha AByMepHo rsro aa cBepeHV c
eKcII epr4 MeHTilnHr4 I.AHHU.
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