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Abstract,

Finite volume method for spatial discretization of two-dimensional Euler
equations is used to describe flow of an inviscid gas among structural elliptic grid. A four
step Runge-Kutta scheme is also applied for time integration. A non-linear artificial
viscosity is added to suppress numerical oscillation of solution. The boundary conditions at
inflow and outflow are based on the method of characieristics. The results Jor some
subsonic cases are presented and collated with experimental data.

Introduction,

For the several decades past a wide number of methods for
simulation of viscous compressible flow have been developed. One of them,
a finite volume method, is proved simple and efficient for calculation of
such cases. The choice of this method is determined by these factors.

It is possible to apply the method for various cases of space
discretization. This fact determines two forms of numerical flux
implementation — the so called cell and node centering, It is useful to apply
ccll centering while structural quadrilateral grid is used. Otherwise, in case
of triangular meshes, both ways of centering are permitted but in case of
node centering an overlapping of two adjacent cells occurs, In the case when
the grid is generated by solving a system of Laplace equations, a solation
among curves extremely close to the flow equipotential and stream lines is
asked.

When the spatial discretization is done, the considered partial
differential equation is reduced to ordimary one. There are different
numerical methods for solving space — discretized Euler equations but most
frequently applied are Runge — Kutta schcmes. These schemes use
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information from only one previous iterative stage. Their advantage is the
increased accuracy. Actually, when high accuracy is not required, it is
possible to adjust the current iterative step size. This fact allows acceleration
of the numerical process.

Theoretical background.

Conservative system equations, describing compressible gas flow
among Cartesian coordinates (2D), is consisting of continuity, Euler and
energy equaticns. It has the form:

Ja . d zr. d _r.
(1 =G,y )+ o= Fla(x, y, )]+ =[G (x. y.1)]=
o1 ox oy
P pu oV
_ 13_ ou i i ou’ + P i B_ 0O uy - 0
dt ||pv dx £ uv dy ||lpv? + p
E (E + pu (E + p

where p is density, u,v are Cartezian velocities, p is static pressure
and E is the total internal energy per unit mass. Then the following
problem is formulated: find out the monotonous scalar functions © , u ,
v, E and p ,initially defined in space of states, with initial conditions
G(x.y,0)=G,(x,y)
and boundary conditions
B(G(x,y,t))=0
Here B is operator for determination
u_:}'(x,y,r)=||p pu Py E”T
and p is replaced with the following expression:

p(p,e)= pRT = pr—= p%e =(x - 1)pe =

© w

= (x—l){E—;—p(u2+v2)j|.

Here x is the Poisson adiabatic constant, R is universal gas constant and
¢ ,.c, are the specific heats. The unknown quantities are included in the

governing equations with their dimensionless values
7 L
% =L 4= u,v o = /e
Po T, RT po/RT

p:
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where the subscript ( )0 denoles stagnation parameter,

Numerical solution.

The finite volume method is applied for solving of equations (1). For
this purpose the physical space around the rigid body is discretized te
quadrilateral cells (finite volumcs - fig. 2). As explained in Ref. [1] the basic
idea of the method is to satisfy the integral form of cquations (1) for each
control volume. It is necessary to find out total flux of vectors f (c}' ) and
g (c}' ) on each face of the cell separately and so on along the entire grid.

Then, as proposed in Ref. [2], for the present time step, the system (1) is
discretized for the current cell like this:

%(m%ﬁ U,0.)=0

5l e 3 )+ Cravp, =0

‘aa—t[J (pv )]+ > [U cov), + (G Ax, p, ]= 0

2)

4

2 (e Y 0, B+ p)]=0

k=1
The J symbol means the cell area and
U, = (_ I)k Ayu, + (_ 1)k+IAkak

corresponds to a contravariant velocity component. The sign replacement in
front of an individual additive is conformed to normal vector sign variation
while shifting to the adjacent cell. Each quantity, in system (2), is evaluated
as the average of the valucs in the cells on the two sides of the cell’s face
{fig. 1), for example:

Ul(p“)i = ;—[U‘-_J-(,OM )i,j + Ui,_f—l(p“ ):‘,j-—l]

Thus the scheme is an analog of a
central difference scheme on a
Cartezian grid.

Time - depending
derivative discretization scheme,
[or space-discretized equations

Fig. 1. Flux calculation sequence
about cell i, j .
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dg . 1
“;—"F },-_Q (g.)=0,
i =1,2,3,..
is 4™ order Runge — Kutta
g =q"
g = g© _ %LQ (qw))
g =q' - %Q @)

g = q©® —%Q (qm)

(4) _ m_ﬂ 0 _éﬁ_ _S‘_’ (2)__Ai (.”
' =g 6Q(q”) 3Q(q“’) 3Q(q ) 6Q(q

q(n+1) — C](4)

Here the flux @ (q,. ) is computed over again at cach time step where the
following initial conditions are considered:

k=14 po=1 py,=1 a,-= Jm
P o

Ug =M jajcos ¢ vy =M _a,sin «
Here symbol a denotes speed of sound, @ means the angle of attack and
M denotes Mach number.
To suppress non-physical oscillations of the results, according to
Ref. [2], the last time step is augmented by addition of the filter:

g""" =g AD ' u D g+ AD P ,D g™

In the expression above the superscripts + and — denoted forward and
backward difference operators. The coefficients g, and , éare made
proportional to

Q:‘+1,j - ZQ;',; + Q;—l,j

QHI,;‘ ZQ;',J'_QI'—L,;

Q:‘,J'-u - 2Q;‘.; + Qi,j—l

Qi +20,;, -0, ,.,

‘The boundary conditions, in accordance with placement, are reduced

to the following kinds: along the rigid body contour and along the outer
boundary of the physical domain. In regard to the first group, it is truth that

/L{ X ~

.l_

ﬂ y ~
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all fluxes across contour are identically zero (impermeable condition).
Exception is numerical contribution to the momentum flux.

The sccond kind boundary conditions, computation of which is
based upon onc-dimensional characteristic method, is divided on inflow and
cutflow. Because wave propagation normal to the boundary is dominang,
variations parallel to the boundary may be neglected and the lincarized one-
dimensional Euler equations can be written as:

ot dx
0 u Joj 0 0
u 0 U 0 i—
U = A = 0
¥ 0 0 u 0
P 0 pa® 0 u s

The reference state for evaluating the matrix A will be the state on
boundary at the old time step. To make the matrix A constant, the average
value of the slate vector on the boundary will be used to evaluate A .

For subsonic inflow, therc are three incoming waves and one
outgoing wave. The last onc is computed by the algorithm using quantity
conservation of corresponding Riemann invariant among the same wave
while for the incoming waves the prescribing quantities for nozzle inflow
(total enthalpy, entropy and flow angle) are used:

H = -L—E—Jrl—(bﬂ + vz)
k-1 2
=In{(p)-xh(p)

v
o = arcty —
u

For subsonic outflow the
linearized analysis shows that there are
three outgoing waves and one incoming
wave. [n such case it is classic to
prescribe the static pressure at outflow
nodes.

il
Computational grid. [

‘ As was ment:ollﬁ?d above, tf'ie Fig. 2. An “O”-type computational
physical domain surrounding wing section grid (above) and its expanded center

is discretized into finite cells, In the (below) surrounding Eppler387 wing
section
94
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current case of study this fact isjachieved by curvilinear elliptic coordinate
system generation by solving system Laplace equations. As mentioned in
Ref. [3] the iterative act of synthesis uses initial coordinates of the grid
nodes, which are evaluated previously by interpolating the interior of the
physical domain. The grid coordinates at the boundaries of the field import
the boundary conditions. The interpolation used is onc-dimensional
(normally to boundary curves) and includes hyperbolic tangent function. In
this way the derived initial “ordinate” axis allocation corleqponds well to the
Laplace operator “effect of smoothness™: the closing in of the “abscissas”

curves to the convex boundary.i The construction of the interpolation, as
proposed it Ref, [4], is made as follows let arc length s varies from 0 to |
and arc’s points number ¢ Vanes from 0 to [ in such way so

s(@)= 0;s (1)=1.Initially, jassigning vatues of the first derivatives

57 o€ =0)=as,
s(c: = !): As,

the following expressions arc deﬁhed:

A l= _Asz
As,
B - |
I ~fAs;As,
. sh
B =
o

Then these equations are valid:

AR (k]

. - e (§ )
o) A+r(Q-Au @)
If the cquations above are applied to curve for which
r (cf )E [7. (O ) (1 )] then forl the curve point distribution follows:
FEY=7F0)+ [FU )‘I FOMs(E)E =0,1,2,3,., 1
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The derived in the described manner initial grid quantities are
“smoothed” by solving the Laplace equations about 7
AL =0
Ap=0
which are previously transformed into curvulinear basis (Ref. [3]). The new
system equations looks like:
Bulze + 8ufyy — 28uly =0
2 2
8 = Xg+ Ve
En = x; + J’;
812 = XXy T Ve,
It is solved, after aproximation with finite defferences, by successive
overrelaxation rmethod with corresponding coefficient @ = 1.8 .

Resulis.

An “(Q” - type elliptic grid has been generated with 200 points along
tangent and 100 points along normal directions of Eppler 387 wing scction. .
Thus the physical domain around the foil has been discretized with 20000
cells (fig. 2).

With the developed numerical algorithm serial calculations has been
implemented with various Reynelds numbers and angles of attack. The
results, verified with experimental data (published in Ref. {5]), are shown
below. There are not a good coincidence with the experiment at the
Reynolds numbers Re~60000. The reason of this is inability of the
algorithm to predict transient flows.

Re=60000

Cy

[P Experim ental data
| Mum erical data

-5 0 5 10 15
Angle of attack, deg
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Re=100000

Lo &xpériman{élE;a |
———————Mumarical data |

Cy

e - - - - - Exp.a(i_mnnluld.‘ll.‘l
Numericzldstla

Cy

-5 4] 5 10 15

Conclusion.

A finite volume method has been used to solve partial differential
equations of Euler, describing a motion of an ideal gas in two-dimensional
space. A steady-state solution has been achieved using a 4% order Runge -
Kutta scheme. The numerical oscillations of solution were suppressed by
augmenting artificial viscosity. The boundary conditions were derived using
method of characteristics. An elliptic grid has been generated while solving
a system of Laplace equations. The ability of the algorithm has been
demonstrated to simulate a subsonic flow over a wing section.
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INPUJIOXKEHHUE HA METO/IA HA KPAHHUTE OBEMH U
CXEMA PYHTE - KYTA 3A AEPOJUHAMMYEH AHAJIN3 HA
OBTUYAHETO HA KPHJIEH [IPO®II

Konemanmun Memoduee
Pezome

B paGorata e wm3momssam MeToma mHa KpailHuTe obemu 3a
AMCKpeTH3alina Ha ypaBHeHuara Ha Ofiep, ONHCBAINH ABMKCHHUETO Ha
MACANCH 143 BBPXY CIPYKTYPH2 EIMITHYHA KOODHAMHATHA CHCTEMA.
Wsnomspara e chino cxema Pyure-Kyta or 4-tu pen sa mnocnemsaunio
HHTeIpupare no Bpeme. JloGasen ¢ HenHHeeH M3KYCTBEH BUCKOZHTET 3a 1a
C¢ IMOATHCHAT HEQUINYCCKH WHCICHW OCUWIALMK Ha PELEHHETO.
Onpegensmero na rpauuunure yenopus e 6asupaHo Ha MeTolg Ha
XApaKTEPHCTUKUTE. PesynTaTvre oT NpunoKeHHETO Ha alropuThMAa BBPXY
Ciydait Ha Jl03ByKOBO 0OOTMYAHE Ha JBYMEPHO TSNO ca CBEPEHU ¢
SKCHIEPUMEHTANIHN JaHHH.
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